362 research outputs found

    Molecular control of autonomous embryo and endosperm development

    Get PDF
    Precocious seed development is usually prevented by a series of mechanisms that ensure seed production results from double fertilization. These events are circumvented in natural apomictic plant species that reproduce clonally through seed. Recent advances in molecular genetics using mutagenic approaches in model sexual plant species, such as Arabidopsis and Zea mays, have revealed some of the mechanisms that prevent such precocious seed development. An understanding of these mechanisms may lead to the development of techniques that will allow future crop plant species exhibiting hybrid vigor to be engineered such that their complex genomes can be fixed indefinitely, thereby maintaining high yields. Our current understanding of the mechanisms underlying the processes of reproductive development is discussed in this revie

    Rcount: simple and flexible RNA-Seq read counting

    Get PDF
    Summary: Analysis of differential gene expression by RNA sequencing (RNA-Seq) is frequently done using feature counts, i.e. the number of reads mapping to a gene. However, commonly used count algorithms (e.g. HTSeq) do not address the problem of reads aligning with multiple locations in the genome (multireads) or reads aligning with positions where two or more genes overlap (ambiguous reads). Rcount specifically addresses these issues. Furthermore, Rcount allows the user to assign priorities to certain feature types (e.g. higher priority for protein-coding genes compared to rRNA-coding genes) or to add flanking regions. Availability and implementation: Rcount provides a fast and easy-to-use graphical user interface requiring no command line or programming skills. It is implemented in C++ using the SeqAn (www.seqan.de) and the Qt libraries (qt-project.org). Source code and 64 bit binaries for (Ubuntu) Linux, Windows (7) and MacOSX are released under the GPLv3 license and are freely available on github.com/MWSchmid/Rcount. Contact: [email protected] Supplementary information: Test data, genome annotation files, useful Python and R scripts and a step-by-step user guide (including run-time and memory usage tests) are available on github.com/MWSchmid/Rcoun

    Nuclear fusions contribute to polyploidization of the gigantic nuclei in the chalazal endosperm of Arabidopsis

    Get PDF
    Somatic polyploidization is recognized as a means to increase gene expression levels in highly active metabolic cells. The most common mechanisms are endoreplication, endomitosis and cell fusion. In animals and plants the nuclei of multinucleate cells are usually prevented from fusing. Here, we report that the nuclei from the syncytial cyst of the chalazal endosperm of Arabidopsis thaliana (L.) Heynh. are polyploid with some intermediate ploidy levels that cannot be attributed to endoreplication, suggesting nuclear fusion. Analysis of isolated nuclei, together with fluorescent in situ hybridization (FISH), revealed that nuclei from the chalazal endosperm are two or three times bigger than the nuclei from the peripheral endosperm and have a corresponding increase in ploidy. Together with the consistent observation of adjoined nuclei, we propose that nuclear fusion contributes, at least in part, to the process of polyploidization in the chalazal endosperm. Confocal analysis of intact seeds further suggested that free nuclei from the peripheral endosperm get incorporated into the chalazal cyst and likely participate in nuclear fusion

    A paternal signal induces endosperm proliferation upon fertilization in Arabidopsis

    Get PDF
    In multicellular organisms, sexual reproduction relies on the formation of highly differentiated cells, the gametes, which await fertilization in a quiescent state. Upon fertilization, the cell cycle resumes. Successful development requires that male and female gametes are in the same phase of the cell cycle. The molecular mechanisms that reinstate cell division in a fertilization-dependent manner are poorly understood in both animals and plants. Using Arabidopsis, we show that a sperm-derived signal induces the proliferation of a female gamete, the central cell, precisely upon fertilization. The central cell is arrested in S phase by the activity of the RETINOBLASTOMA RELATED1 (RBR1) protein. Upon fertilization, delivery of the core cell cycle component CYCD7;1 causes RBR1 degradation and thus S phase progression, ensuring the formation of functional endosperm and, consequently, viable seeds

    Unveiling the gene-expression profile of pollen

    Get PDF
    Four recent papers have characterized the transcription profile of pollen grains, showing striking differences between gene expression in pollen and other plant tissues. These studies increase the number of known pollen-expressed genes by as much as 50-fold and have identified many novel genes that are potentially pollen-specific

    The walls have ears: the role of plant CrRLK1Ls in sensing and transducing extracellular signals

    Get PDF
    In plants, organ formation and cell elongation require the constant adjustment of the dynamic and adaptable cell wall in response to environmental cues as well as internal regulators, such as light, mechanical stresses, pathogen attacks, phytohormones, and other signaling molecules. The molecular mechanisms that perceive these cues and translate them into cellular responses to maintain integrity and remodelling of the carbohydrate-rich cell wall for the coordination of cell growth are still poorly understood. In the last 3 years, the function of six membrane-localized receptor-like kinases (RLKs) belonging to the CrRLK1L family has been linked to the control of cell elongation in vegetative and reproductive development. Moreover, the presence of putative carbohydrate-binding domains in the extracellular domains of these CrRLK1Ls makes this receptor family an excellent candidate for coordinating cell growth, cell-cell communication, and constant cell wall remodelling during the plant life cycl

    Genomic Origin and Organization of the Allopolyploid Primula egaliksensis Investigated by in situ Hybridization

    Get PDF
    Background and Aims Earlier studies have suggested that the tetraploid Primula egaliksensis (2n = 40) originated from hybridization between the diploids P. mistassinica (2n = 18) and P. nutans (2n = 22), which were hypothesized to be the maternal and paternal parent, respectively. The present paper is aimed at verifying the hybrid nature of P. egaliksensis using cytogenetic tools, and to investigate the extent to which the parental genomes have undergone genomic reorganization. Methods Genomic in situ hybridization (GISH) and fluorescent in situ hybridization (FISH) with ribosomal DNA (rDNA) probes, together with sequencing of the internal transcribed spacer (ITS) region of the rDNA, were used to identify the origin of P. egaliksensis and to explore its genomic organization, particularly at rDNA loci. Key Results GISH showed that P. egaliksensis inherited all chromosomes from P. mistassinica and P. nutans and did not reveal major intergenomic rearrangements between the parental genomes (e.g. interchromosomal translocations). However, karyological comparisons and FISH experiments suggested small-scale rearrangements, particularly at rDNA sites. Primula egaliksensis lacked the ITS-bearing heterochromatic knobs characteristic of the maternal parent P. mistassinica and maintained only the rDNA loci of P. nutans. These results corroborated sequence data indicating that most ITS sequences of P. egaliksensis were of the paternal repeat type. Conclusions The lack of major rearrangements may be a consequence of the considerable genetic divergence between the putative parents, while the rapid elimination of the ITS repeats from the maternal progenitor may be explained by the subterminal location of ITS loci or a potential role of nucleolar dominance in chromosome stabilization. These small-scale rearrangements may be indicative of genome diploidization, but further investigations are needed to confirm this assumptio

    Introduction to Epigenetics

    Get PDF
    This open access textbook leads the reader from basic concepts of chromatin structure and function and RNA mechanisms to the understanding of epigenetics, imprinting, regeneration and reprogramming. The textbook treats epigenetic phenomena in animals, as well as plants. Written by four internationally known experts and senior lecturers in this field, it provides a valuable tool for Master- and PhD- students who need to comprehend the principles of epigenetics, or wish to gain a deeper knowledge in this field. After reading this book, the student will: Have an understanding of the basic toolbox of epigenetic regulation Know how genetic and epigenetic information layers are interconnected Be able to explain complex epigenetic phenomena by understanding the structures and principles of the underlying molecular mechanisms Understand how misregulated epigenetic mechanisms can lead to diseas
    corecore